A Weighted Linear Matroid Parity Algorithm

نویسندگان

چکیده

Related DatabasesWeb of Science You must be logged in with an active subscription to view this.Article DataHistorySubmitted: 3 August 2017Accepted: 21 2020Published online: 07 January 2021Keywordslinear matroid parity, matching, polynomial-time algorithm, Pfaffian, primal-dual approachAMS Subject Headings90C27Publication DataISSN (print): 0097-5397ISSN (online): 1095-7111Publisher: Society for Industrial and Applied MathematicsCODEN: smjcat

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shortest Disjoint S-Paths Via Weighted Linear Matroid Parity

Mader’s disjoint S-paths problem unifies two generalizations of bipartite matching: (a) nonbipartite matching and (b) disjoint s–t paths. Lovász (1980, 1981) first proposed an efficient algorithm for this problem via a reduction to matroid matching, which also unifies two generalizations of bipartite matching: (a) non-bipartite matching and (c) matroid intersection. While the weighted versions ...

متن کامل

The linear delta-matroid parity problem

This paper addresses a generalization of the matroid parity problem to delta-matroids. We give a minimax relation, as well as an efficient algorithm, for linearly represented deltamatroids. These are natural extensions of the minimax theorem of Lovász and the augmenting path algorithm of Gabow and Stallmann for the linear matroid parity problem. r 2003 Elsevier Science (USA). All rights reserved.

متن کامل

A Algebraic Algorithms for Linear Matroid Parity Problems

We present fast and simple algebraic algorithms for the linear matroid parity problem and its applications. For the linear matroid parity problem, we obtain a simple randomized algorithm with running time O(mrω−1) where m and r are the number of columns and the number of rows and ω ≈ 2.3727 is the matrix multiplication exponent. This improves the O(mrω)-time algorithm by Gabow and Stallmann, an...

متن کامل

A Fast, Simpler Algorithm for the Matroid Parity Problem

Consider a matrix with m rows and n pairs of columns. The linear matroid parity problem (LMPP) is to determine a maximum number of pairs of columns that are linearly independent. We show how to solve the linear matroid parity problem as a sequence of matroid intersection problems. The algorithm runs in O(mn). Our algorithm is comparable to the best running time for the LMPP, and is far simpler ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Computing

سال: 2021

ISSN: ['1095-7111', '0097-5397']

DOI: https://doi.org/10.1137/17m1141709